Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Res ; 27(1)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32167561

RESUMO

Restriction-modification systems (R-M) are one of the antiviral defense tools used by bacteria, and those of the Type II family are composed of a restriction endonuclease (REase) and a DNA methyltransferase (MTase). Most entering DNA molecules are usually cleaved by the REase before they can be methylated by MTase, although the observed level of fragmented DNA may vary significantly. Using a model EcoRI R-M system, we report that the balance between DNA methylation and cleavage may be severely affected by transcriptional signals coming from outside the R-M operon. By modulating the activity of the promoter, we obtained a broad range of restriction phenotypes for the EcoRI R-M system that differed by up to 4 orders of magnitude in our biological assays. Surprisingly, we found that high expression levels of the R-M proteins were associated with reduced restriction of invading bacteriophage DNA. Our results suggested that the regulatory balance of cleavage and methylation was highly sensitive to fluctuations in transcriptional signals both up- and downstream of the R-M operon. Our data provided further insights into Type II R-M system maintenance and the potential conflict within the host bacterium.


Assuntos
Colífagos/metabolismo , Desoxirribonuclease EcoRI/metabolismo , Escherichia coli/enzimologia , Escherichia coli/virologia , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Colífagos/genética , Clivagem do DNA , Metilação de DNA/genética , Desoxirribonuclease EcoRI/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Óperon/genética , Plasmídeos/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética
2.
Acta Biochim Pol ; 66(1): 83-89, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30768658

RESUMO

One possible mechanism preventing phage infection of the bacterial cells is related to the presence of an effective restriction-modification system (R-M) which allows restriction of the invading DNA. However, there are some limitations to the absolute restriction of foreign DNA. Since there is a serious conflict between increase in the restriction-modification genes expression level and cell viability, we examined the antiviral effect of EcoRI restriction endonuclease after its translocation to the periplasmic space of the cell. We assumed that such reconstructed R-M system could be able to degrade foreign DNA at the stage of its passage through the cell envelope of Gram-negative bacteria, before its penetration into the bacterial cytoplasm. The Tat secretion pathway of Escherichia coli was used to export R.EcoRI fused to the TorA leader peptide across the cytoplasmic membrane. However, although we observed a huge accumulation of the TorAss-R.EcoRI pre-protein in the cytoplasm the Tat system did not provide an efficient transport across the cytoplasmic membrane. Moreover, our data strongly suggest that endonuclease cannot function under the conditions prevailing in periplasmic space, therefore, the transported endonuclease could not contribute to an increase in restriction properties of the host.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Escherichia coli/enzimologia , Periplasma/metabolismo , Antivirais/metabolismo , Membrana Celular/metabolismo , Enzimas de Restrição do DNA/genética , Escherichia coli/virologia , Proteínas de Escherichia coli/metabolismo
3.
Microb Cell Fact ; 17(1): 184, 2018 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-30474557

RESUMO

BACKGROUND: The viral or host systems for a gene expression assume repeatability of the process and high quality of the protein product. Since level and fidelity of transcription primarily determines the overall efficiency, all factors contributing to their decrease should be identified and optimized. Among many observed processes, non-programmed insertion/deletion (indel) of nucleotide during transcription (slippage) occurring at homopolymeric A/T sequences within a gene can considerably impact its expression. To date, no comparative study of the most utilized Escherichia coli and T7 bacteriophage RNA polymerases (RNAP) propensity for this type of erroneous mRNA synthesis has been reported. To address this issue we evaluated the influence of shift-prone A/T sequences by assessing indel-dependent phenotypic changes. RNAP-specific expression profile was examined using two of the most potent promoters, ParaBAD of E. coli and φ10 of phage T7. RESULTS: Here we report on the first systematic study on requirements for efficient transcriptional slippage by T7 phage and cellular RNAPs considering three parameters: homopolymer length, template type, and frameshift directionality preferences. Using a series of out-of-frame gfp reporter genes fused to a variety of A/T homopolymeric sequences we show that T7 RNAP has an exceptional potential for generating frameshifts and is capable of slipping on as few as three adenine or four thymidine residues in a row, in a flanking sequence-dependent manner. In contrast, bacterial RNAP exhibits a relatively low ability to baypass indel mutations and requires a run of at least 7 tymidine and even more adenine residues. This difference comes from involvement of various intrinsic proofreading properties. Our studies demonstrate distinct preference towards a specific homopolymer in slippage induction. Whereas insertion slippage performed by T7 RNAP (but not deletion) occurs tendentiously on poly(A) rather than on poly(T) runs, strong bias towards poly(T) for the host RNAP is observed. CONCLUSIONS: Intrinsic RNAP slippage properties involve trade-offs between accuracy, speed and processivity of transcription. Viral T7 RNAP manifests far greater inclinations to the transcriptional slippage than E. coli RNAP. This possibly plays an important role in driving bacteriophage adaptation and therefore could be considered as beneficial. However, from biotechnological and experimental viewpoint, this might create some problems, and strongly argues for employing bacterial expression systems, stocked with proofreading mechanisms.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Mutação da Fase de Leitura/genética , Transcrição Gênica , Proteínas Virais/metabolismo , Composição de Bases/genética , Sequência de Bases , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...